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Abstract

Placing sensors in municipal water networks to protect against a set of contami-

nation events is a classic p-median problem for most objectives when we assume that

sensors are perfect. Many researchers have proposed exact and approximate solution

methods for this p-median formulation. For full-scale networks with large contamina-

tion event suites, one must generally rely on heuristic methods to generate solutions.

These heuristics provide feasible solutions, but give no quality guarantee relative to

the optimal placement.

In this paper we apply a Lagrangian relaxation method in order to compute lower

bounds on the expected impact of suites of contamination events. In all of our ex-

periments with single objectives, these lower bounds establish that the GRASP local

search method generates solutions that are provably optimal to to within a fraction of

a percentage point. Our Lagrangian heuristic also provides good solutions itself and

requires only a fraction of the memory of GRASP.

We conclude by describing two variations of the Lagrangian heuristic: an aggre-

gated version that trades off solution quality for further memory savings, and a multi-

objective version which balances objectives with additional goals.

1 Introduction

A key component of contaminant warning system design for municipal water distribution
networks is the intelligent location of sensors. A typical process for determining these loca-
tions begins with the computation of an extensive suite of simulated contamination incidents
using, for example, EPANET [21]. The results of these simulations feed optimization algo-
rithms that attempt to minimize the expected impact of an incident in the input suite. In
its most familiar form, this problem reduces to a “p-median” problem (described in Sec-
tion 2). This theoretically hard problem typically defies solution methods that attempt to
find provably optimal solutions as the size of the network grows past tens of thousands of
nodes.
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However, experimental results shows that local search heuristics such as GRASP [20]
seem to readily and accurately solve those p-median instances that arise in the context of
water sensor placement. In previously published work [9], we showed for some moderate-sized
instances that the solutions produced by GRASP were in fact provably optimal. However,
we were required to use an exact solution method called Mixed-Integer Programming (MIP)
to achieve those results. As water distribution network sizes increase indefinitely, though,
MIP can no longer be expected to find optimal solutions. There are two reasons for this.
The first is that solving very large MIP models to optimality is a well-known hard problem.
With that said, the MIP model can be relaxed into a linear programming (LP) model that
provides lower bounds on solutions quality and is computationally tractable. Therein lies the
second, and more important reason: even solving the LP requires large amounts of computer
memory.

In this paper we apply a classical method called Lagrangian relaxation to the problem of
lower bound computation. The method we apply exploits mathematical structure in the p-
median problem in order to reduce the memory requirements. In Lagrangian relaxation, we
remove some of the constraints, instead applying pressure to satisfy them by adding penalties
to the objective function when we fail to meet them. We consider Barahona and Chudak’s
Lagrangian method for p-median problems [3]. This uses Barahona and Anbil’s Volume
algorithm [2], a subgradient method that produces a series of valid lower bounds, converging
to the optimal linear-programming solution. Furthermore, we can use a specialized form of
randomized rounding to compute a feasible sensor placement that is biased by this fractional
LP solution. Thus the Lagrangian code is a true solver rather than just a lower bound engine.

The Lagrangian relaxation method requires space proportional to the input data, while
other previous methods, including LP, require space proportional to the square of the input
data in the worst case. For large problems, the Lagrangian relaxation method requires an
order of magnitude less space than LP methods and even an order of magnitude less space
than fast implementations of local-search methods such as GRASP. The lower bounds are
extremely close to the LP bounds and the solutions are usually within 10% of the best known
solution.

2 Background

Researchers have developed a variety of technical approaches for solving sensor placement
problems including mixed-integer programming (MIP) models [5, 4, 16, 15, 19, 22], combi-
natorial heuristics [13, 14, 18], and general-purpose metaheuristics (e.g., [18]).

A common feature of most sensor placement formulations is that they rely either di-
rectly or indirectly on contaminant transport simulation models. Simulation tools, like
EPANET [21], perform extended-period simulation of the hydraulic and water quality be-
havior within pressurized pipe networks. These models can be used to evaluate the expected
flow in water distribution systems, and they can model the transport of contaminants and
related chemical interactions. Thus, a water utility can assess risks to their distribution
network by considering simulations of an ensemble of contamination incidents, which reflect
the impact of contamination at different locations, times of the day, etc.

A key limitation of early sensor placement formulations is that they incorporate con-



tamination transport simulation results indirectly. Consequently, the optimized value of the
final solution may not accurately approximate a risk assessment performed with contaminant
transport simulations. We have proposed a mixed-integer programming (MIP) model that
resolves this difficulty by directly integrating contaminant transport simulation results [8, 5].
The MIP objective exactly captures water utilities’ current risk metrics. Furthermore, this
model can minimize a variety of different design objectives simply by integrating different
statistics from the simulation results. This model assumes that a potentially large number of
contamination incidents can be simulated, but these simulations are preprocessing steps that
can be done in advance of the optimization process. Thus, the time needed for simulation
does not impact the time spent performing sensor placement.

Our MIP formulation for sensor placement is:

(SP) minimize
∑

a∈A

αa

∑

i∈La

daixai

where































∑

i∈La

xai = 1 ∀a ∈ A
xai ≤ si ∀a ∈ A, i ∈ La
∑

i∈L si ≤ p

si ∈ {0, 1} ∀i ∈ L

0 ≤ xai ≤ 1 ∀a ∈ A, i ∈ La

This MIP minimizes the expected impact of a set of contamination incidents defined by
A. For each incident a ∈ A, αa is the weight of incident a, frequently a probability. The
EPANET simulator reports contamination levels at a set of locations, denoted L, where a
location refers to network junction. For each incident a, La ⊆ L is the set of locations that
can be contaminated by a. Thus a sensor at a location i ∈ La can detect contamination from
incident a at the time contamination first arrives at location i. Each incident is witnessed

by the first sensor to see it. For each incident a ∈ A and location i ∈ La, dai defines the
impact of the contamination incident a if it is witnessed by location i. This impact measure
assumes that as soon as a sensor witnesses contamination, then any further contamination
impacts are mitigated (perhaps after a suitable delay that accounts for the response time of
the water utility). The si variables indicate where sensors are placed in the network, subject
to a budget p, and the xia variables indicate whether incident a is witnessed by a sensor at
location i.

We may not be able to witness all contamination incidents with a given set of sensors.
To account for this, L contains a dummy location. This dummy location is in all subsets
La. The impact for this location is the impact of the contamination incident after the entire
contaminant transport simulation has finished, which corresponds to the impact that would
occur without an online CWS.

Remarkably, SP is identical to the well-known p-median facility location problem [17]. In
the p-median problem, p facilities (e.g., central warehouses) are to be located on m potential
sites such that the sum of distances dai between each of n customers (e.g., retail outlets)
and the nearest facility i is minimized. In comparing SP and p-median problems, we observe
equivalence between (1) sensors and facilities, (2) contamination incidents and customers,
and (3) contamination impacts and distances. While SP allows placement of at most p

sensors, p-median formulations generally enforce placement of all p facilities; in practice, the
distinction is irrelevant unless p approaches the number of possible locations.



3 Lagrangian Heuristic

We now describe a Lagrangian relaxation model for the sensor placement problem. As with
all Lagrangian relaxation, we remove some of the constraints, leaving behind a problem
that is easy to solve. We apply pressure to satisfy the constraints we have relaxed by
adding penalties to the objective function. These penalties are proportional to the constraint
violations. Thus there is no penalty if a constraint is met, a small penalty for a small
violation, and a larger penalty for a larger violation.

We relax the first set of constraints in the SP formulation, those that require each incident
is witnessed by some sensor; recall that this might be the dummy sensor that indicates a
failure to detect the incident. This constraint is written as an equality, because that is a
more efficient integer programming formulation. However, the difficult part of the constraint
is insuring that at least one sensor witnesses each incident. The objective will prevent over-
witnessing, so for the sake of the Lagrangian relaxation, we consider these constraints to be
inequalities. For some incident a, this constraint is violated for a proposed setting of the si

and xai variables if
∑

i∈La
xai < 1, giving a violation of 1 −

∑

i∈La
xai. We weight each such

violation with its own Lagrangian multiplier λa, which allows us to penalize some violations
more than others. Adding a penalty term λa−λa

∑

i∈La

xai to the objective for each incident
a, the Lagrangian model becomes:

(LAG) minimize
∑

a∈A
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∑
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(dai − λa)xai
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xai ≤ si ∀a ∈ A, i ∈ L̂a
∑

i∈L si ≤ p

si ∈ {0, 1} ∀i ∈ L

0 ≤ xai ≤ 1 ∀a ∈ A, i ∈ L̂a

For a fixed set of λa, we can compute the optimal value of LAG in linear space and
near-linear time using a slight variation on the method described by Avella, Sassano, and
Vasil’ev [1]. The optimal solution to LAG gives a valid lower bound on the value of an
optimal solution to the p-median (SP) problem. This is because any feasible solution to the
p-median problem is feasible for LAG. It has a zero violation for each of the lifted constraints
and a value equal to the original p-median value.

4 Solution Methods

We consider two major solution strategies for the sensor-placement problem: Lagrangian
and local search.

The local search method was described in [9]. Berry et. al. applied a variation of Re-
sende and Werneck’s GRASP heuristic for the p-median problem [20] to the sensor-placement
problem. This heuristic operates by iteratively improving an initial random sensor place-
ment, and then evaluating every “neighboring” solution. The best neighboring solution then
becomes the current solution, and we repeat the search process until the current solution
is locally optimal. Our neighborhood for a sensor placement S with p sensors is any other



sensor placement that agrees with S on p − 1 placements. So we find neighbors by moving
a single sensor to another location.

We consider two variants of the local search method: dense and sparse. This refers only to
the representation of the impact matrices. The sparse version uses less space at the expense
of time. The internal local search method uses specialized GRASP code, which in its fastest
form uses dense data structures (like two-dimensional matrices proportional to n2 where n

is the number of nodes). This is common to both the sparse and dense implementations we
used.

The other major strategy is to solve the Lagrangian model given in Section 3. We
use the Lagrangian-based lower-bounding method for the p-median problem described by
Avella, Sassano, and Vasil’ev [1]. They give a Lagrangian model for which one can compute
the optimal solution, given a set of Lagrangian multipliers, in linear space and near-linear
time. More specifically, the Lagrangian-based bounding procedure requires O(n+ D) space,
where n is the number of sensor locations and D is the total number of impacts. This is
an asymptotically optimal memory requirement for an in-core implementation. Barahona
and Chudak [3] give a Lagrangian formulation for the related unconstrained facility location
problem, where one balances a facility opening cost with the service costs rather than lim-
iting the number of facilities. Barahona and Chudak detail how to use subgradient search,
specifically Barahona and Anbil’s Volume algorithm [2], to find Lagrangian multipliers that
produce progressively higher lower bounds. This method begins with λa = 1 for all inci-
dents a, solves the relaxed problem, then iteratively updates the multipliers, increasing the
multipliers in proportion to the violation. The updates require space and time linear in the
number of variables. We modified the Vol unconstrained facility location code, available in
the COIN-OR repository [10] for the p-median problem. This will converge to an optimal
solution for the p-median problem. This search converges to a set of Lagrangian multipliers
for which the optimal solution to our relaxed problem is an optimal solution to the p-median
linear-programming (LP) relaxation.

Given a fractional solution to the p-median LP, we can treat the fractional values as
probabilities and select sensors randomly according to this probability. However, one is
unlikely to get precisely p sensors this way. We use the method of Berry and Phillips [6]
for efficiently sampling over the “lucky” distribution where we select precisely k sensors. If
necessary, we then select the dummy location.

We consider two ways to present a p-median problem to the Lagrangian solver. In
the first, we present the set of locations and possible witnesses as described. This is the
non-aggregated input method. In the second method, we aggregate witnesses with identical
impacts into superlocations. The superlocation can cover an incident with one node rather
than the whole set. As Berry et al described [9, 7], an integer program benefits from this
space reduction while still selecting at least one real location for each selected superlocation.
The Lagrangian method is not aware of superlocation structure, so we must select a real
location after the computation. We currently simply select the first one. In Section 8 we
discuss possible ways to do this better.



Method net 1 net 2 net 3 net 1 net 2 net 3
1 ev/day 1 ev/day 1 ev/day 4 ev/day 4 ev/day 4 ev/day

Lag Agg 0.27 18 83 1.1 70 200
Lag No Agg 0.32 62 280 2.4 230 1000
Sparse LS 0.23 25 220 1.1 95 720
Dense LS 0.097 7.9 86 0.34 27 290

Table 1: Table showing average runtime in seconds for the various solvers. Lag Agg and
Lag No Agg means Lagrangian with and without aggregation respectively. LS means local
neighborhood search. ev/day means number of events per day per non-zero demand node.

5 Experimental Methodology

Our experiments compare the performance of the Lagrangian solver with and without aggre-
gation to the local-search heuristic with either a dense or sparse impact-value representation.
We considered three water networks for our experiments: a “small” instance (network 1) with
410 nodes, a “medium” instance (network 2) with 3358 nodes, and a “large” instance (net-
work 3) with 11575 nodes. These are the same three instances used in Berry et al. [9]. As
in that work, for each instance we created injection ensembles containing injections at each
non-zero demand node (105, 1621, and 9705 nodes respectively) for either a single start time
or for four equally-spaced start times. We consider biological contamination incidents for
which the injection duration is 24 hours, and the inject rate is a large number of cells per
liter (which we omit intentionally).

We considered three impact metrics/objectives: volume of contaminant removed from the
network via demand, mass of contaminant similarly removed from the network, and extent
of pipe contamination. For the four-event-per-day runs, we considered only mass consumed
and extent of contamination. Thus we had 15 test cases (3 networks with 5 combinations
of incidents and objective). For all our experiments we assume no detection delay and we
placed 10 sensors.

6 Results

Tables 1, 2, and 3 show the performance of the solution methods with respect to runtime,
memory, and closeness to optimality respectively. The local-search heuristic always found
the optimal solution, as proven by also solving the problems with the CPLEX 9.0 or 10.0
integer programming solver (for all but one of the largest problems). The non-aggregated
Lagrangian method (with rounding) was usually within 2% of optimal. The aggregated
Lagrangian method, which had no access to the underlying actual locations, did signficantly
worse in minimizing impact. However, its objective value was usually within a factor of 2 of
the optimal.

The smallest network (network 1), was so small that constant-factor terms dominated the
space requirements for the methods. For this network, the local-search heuristics required
less space than the Lagrangian methods. However, by network 2, the assmptotic effects



are starting to domingate, so Lagrangian methods required less space than the local-search
methods and by network 3, especially with four incidents per non-zero-demand node per
day, the Lagrangian methods required much less space. In these largest problems, even the
non-aggregated Lagrangian method required almost an order of magnitude less space than
the dense local search.

The non-aggregated Lagrangian method ran about three-to-five times slower than the
dense local search. The aggregated version ran about as fast as dense local search.

Method net 1 net 2 net 3 net 1 net 2 net 3
1 ev/day 1 ev/day 1 ev/day 4 ev/day 4 ev/day 4 ev/day

Lag Agg 12.1 29.4 98.0 13.6 77.3 207
Lag No Agg 12.5 81.4 330 15.6 290 1150
Sparse LS 4.29 165 1530 7.37 387 2900
Dense LS 3.75 153 2150 8.38 604 8170

Table 2: Table showing average memory in MB for the various solvers. Lag Agg and Lag No
Agg means Lagrangian with and without aggregation respectively. LS means local neigh-
borhood search. ev/day means number of events per day per non-zero demand node.

Overall, the non-aggregated Lagrangian solver is a good choice for problems up to
roughtly three times too large to fit on a standard workstation. The aggregated version
can give some solution to problems up to an order of magnitude too large.

Method net 1 net 2 net 3 net 1 net 2 net 3
1 ev/day 1 ev/day 1 ev/day 4 ev/day 4 ev/day 4 ev/day

Lag Agg 39 85 160 37 48 59
Lag No Agg 2.0 13 0.71 0 1 2.4

Table 3: Table showing average percent over optimal for the Lagrangian solvers. Lag Agg
and Lag No Agg means Lagrangian with and without aggregation respectively. LS means
local neighborhood search. ev/day means number of events per day per non-zero demand
node. The local-search solvers gave the optimal solution on all problems.

Lower Bound Results For the 15 problems we considered, in the worst case, the lower
bound was 96.11 percent of the optimal. In all the other cases, the lower bound was at
least 99.99 percent of the optimal value. Thus the Lagrangian method essentially proved the
optimality of the local search heuristic for these cases. Thus the Lagrangian methods can
provide strong lower bounds in an acceptable amount of time using vastly less space than
linear-programming solvers.



7 Multiple Objectives

In this section we consider the sensor placement problem with multiple objectives. One
might want to optimize both population impacts and network impacts rather than just one
and generally one may want to optimize many objectives simultaneously. Any solution that
is not dominated could be interesting. A solution is dominated if there is another solution
that is at least as good in every objective, and strictly better in at least one metric.

The Lagrangian method described in Section 3 handles multiple objectives easily and
naturally. Suppose we have a goal value g for a secondary objective. That is, we wish to
enforce

∑

a,i∈La

d′aixai ≤ g, for an objective with impacts d′. The violation for this constraint
is

∑

a,i∈La
d′aixai−g. We can weight this violation with its own Lagrangian multiplier (weight)

and add it to the objective as well. We can then solve using the same methods. The solution
may violate the goal, but the multipliers puts pressure on the solver to meet the goal. Our
current implementation does not allow aggregation when there are side constraints. There
is no obvious way to aggregate in a way that works well for all impacts.

The local-search solver in the SPOT toolkit [12] also supports such side constraints.
However, this solver treats the constraints as hard. It will not move to a neighboring solution
if the side constraint is violated. Otherwise, the search proceeds as before. The solver does
not support more than one side constraint, in part because even three side constraints can
lead to frequent failures to find a feasible solution.

Using the same set experimental data as described in Section 5, we created multi-objective
variants as follows. We solved each of the single-objective problems to optimality using
an integer programming solver and evaluated that sensor placement for all three metrics.
For each problem (network, incident set), let bm be the worst value of any of these sensor
placements for metric m and let βm be the optimal for metric m. Let range r = bm − βm.
For that problem and metric, we considered four goals: the optimal βm, and the optimal
plus .25r, .5r, and r. In the last case, we have a reasonably relaxed goal equivalent to what
a solver found when ignoring metric m. We considered problems with single side constraints
and, for the Lagrangian solver, with two side constraints.

Space constraints prohibit an extensive discussion of this experiment, but we now sum-
marize the main points. For networks 1 and 2, the Lagrangian methods found fewer non-
dominated solutions than the local search. However, those it found were generally a little
more balanced across the objectives and had a little better average impact across all met-
rics. For network 3, the local search methods generally did better when they solved, but
in 2 of the 24 problems the local search methods failed to find a solution even though one
existed. Furthermore the local search methods do not use the GRASP optimizations with
side consraints. Therefore by network 3, these searches took much longer than the La-
grangian methods. For network 3, 1 event-per-node-per-day problems, local search for the
dense method required 11 hours on average where (non-aggregated) Lagrangian required 15
minutes even when using two goals. The sparse heuristic was effectively too slow to use.
And even with 2 side constraints, which requires 3 sets of impact data, Lagrangian required
about 700MB of memory while the dense heuristic with one side constraint required 3.2GB



8 Further Work

There are a number of ways we might improve the performance of aggregated Lagrangian.
For example, instead of arbitrarily selecting a real location from each superlocation, we can
find an optimal hitting set (e.g. using [11]). This finds a smallest number of locations to
cover all the superlocations. Though hitting set is an NP-complete problem, and is even
theoretically hard to approximate, it will likely be tractible for this size problem, since
we usually do not place too many sensors. If we need fewer than p sensors to cover the
superlocations, we can add the remainder greedily to maximally reduce impact. This will
likely be important as the number of sensors increases.

We might improve the performance of the multiobjective Lagrangian method by handling
the tiny number of multipliers for the goal constraints differently from the way we handle
the multipliers for the witness constraints.
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